Konza LTER – Plant Community Dynamics

Melinda Smith¹, David Hartnett², Sara Baer³, Scott Collins⁴, Carolyn Ferguson², Karen Garrett⁵, Mark Mayfield², Gene Towne²

¹Department of Ecology & Evolutionary Biology, Yale University ²Division of Biology – KSU ³Plant Biology, Southern Illinois University ⁴Department of Biology, University of New Mexico ⁵Department of Plant Pathology - KSU

Overview

- Highlight major accomplishments during last five years
- Present new research activities that may be incorporated into the LTER VI proposal

Plant Community Dynamics: Metrics

- Richness, diversity (H'), dominance
- Qualitative and quantitative changes in composition over time
 - Community heterogeneity (dissimilarity)
 - Time-lag analysis rate of change
- Turnover of species
 - Loss species extinctions
 - Gain patterns of invasion, invasibility

Plant community dynamics: Sampling

- Permanent sampling transects are replicated at various topographic positions (n = 4/topo position/watershed) in replicate watersheds subjected to the different <u>fire frequency</u>, <u>fire</u> <u>season</u>, and <u>grazing</u> treatments
 - Plant species composition (estimated cover of individual species) is measured in spring and fall in 5 10-m² circular plots/transect (20 plots/topo position)
- Data collected since 1984, 1993 (seasonal burns)

Since 2002, plant species composition data have been included in at least <u>9</u> cross-site comparisons or syntheses.

- **Belowground Plot Experiment** (1986) burning, mowing, and nutrients
- Irrigation Transects (1991) growing season water additions
- Cattle-Bison Comparison (1995) assess effects of cattle vs. bison
- Dominant Species Removals (1996/2000) assess long-term response to removal of dominant grasses
- **RaMPs** (1997) timing of precipitation, warming
- Fire Reversal Experiment (2001) fire history and changing fire regimes
- Water and N limitation Experiment (2002) water and nitrogen limitation
- **Phosphorus Plots** (2003) assess relative P and N limitation
- Savanna Convergence Project (2006) interactions between fire and herbivory in North American and South African grasslands
- Nutrient Network (2007) multiple resource limitation, bottom-up vs top-down control

Other resources: KSU Herbarium

- NSF-funded project to database label and annotation data for all KSC specimens (Kansas vascular plants are complete).
- Development of a digital KSU Biodiversity Information System (BiodIS)
- Continue to work to enhance the collections through ongoing and targeted collecting

Fire and grazing as drivers of plant community dynamics

- Historically important, key components of land use
- Considerations:
 - Fire regime frequency and timing of fires
 - Type of grazer native vs. domesticated

Fire and grazing

Increases dominance by C₄ grasses Reduces diversity

Long-term dynamics

Need to move beyond patterns of change to implications for ecosystem function

- Average soil water content in top 30 cm reduced by 12%.
- Variability in soil moisture increased by 27%.
- Soil temperature increased by 1.4 °C

Impacts on plant species diversity

Knapp et al. 2002

Differential species responses

Dominant C₄ grasses

Andropogon gerardii Sorghastrum nutans

Effects of warming of community diversity

Differential species responses: Flowering

Andropogon more sensitive to warming

Sorghastrum more sensitive to water availability

What are the mechanisms underlying differential sensitivity?

Linking responses across scales

Hierarchical Ecosystem Response Model

Smith, Knapp and Collins, in prep

Linking genetics to ecosystem responses

What is the genetic basis for ecosystem responses to altered climate?

Where do we go from here?

Why a new approach to assessing community change should be considered...

In 1996, 100% of *A. gerardii* and *S. nutans* were removed from 8 plots - Resampled 8 years later

Relative cover data suggested compensation

Additional recommendations

- Take advantage of existing data from long-term experiments to assess how changes in abundance of dominant species influence community change
- Targeted, more comprehensive sampling of existing manipulations
 - Resample long-term dominant species removal experiments
 - Nutrient manipulation experiments, etc...

Integrate across scales

- Broaden our definition of plant community diversity to include other levels of diversity – e.g., *genetic* (of dominant species), pathogen, microbial
 - Assess change in genetic diversity of dominant species in response to long-term manipulations
 - Consider archiving samples for measuring genetic diversity
- Linkage of dynamics across hierarchical scales
- Explicitly include physiology-populationcommunity linkages in ongoing research